
CEWG / Linux Foundation Open Projects

eMMC/SSD File System Tuning Methodology

Rev. 1.0

May 24, 2013

Abstract

This document describes methods of file system performance measurement and tuning for
eMMC/SSD storage media, including open source tools and file system options. It also covers
longevity aspects of eMMC/SSD media with certain file systems and file system power-fail
tolerance in the presence of performance-tuning options.

Audience

Audience of this document is people optimizing I/O performance of embedded systems with
managed FLASH storage devices.

Document Status

Draft

Contact Information

Send your comments, questions and report any other issues related to this document to:
max.filippov@cogentembedded.com and artemi.ivanov@cogentembedded.com.

Cogent Embedded, Inc. contact information is available at http://cogentembedded.com

COGENT EMBEDDED 2

mailto:artemi.ivanov@cogentembedded.com
mailto:max.filippov@cogentembedded.com

May 24, 2013 eMMC/SSD File System Tuning Methodology

Revision History

Rev. Date Author Changes
0.1 October 15, 2012 M. Filippov Initial Revision

0.2 November 1, 2012 M. Filippov Add preliminary results and benchmark scripts
overview

0.3 November 12, 2012 M. Filippov More results, more scripts details
0.4 January 12, 2013 M. Filippov Add IO schedulers results
0.5 May 13, 2013 M. Filippov,

K. Kozhevnikov
Add Wear Intensity and Power-Failure Tolerance
sections. Update results section and clean-up text.

1.0 May 24, 2013 D. Semyonov Describe power-failure testing results. Clean-up text,
styles, and paragraph ordering. Update logo.

Issues

None

COGENT EMBEDDED 3

May 24, 2013 eMMC/SSD File System Tuning Methodology

Table of Contents

1 Introduction...5
1.1 Overview..5
1.2 Acronyms and Abbreviations..5

2 Setup...6
2.1 Hardware Setup..6
2.2 Software Setup...6

3 Performance Benchmarking and Optimization...7
3.1 Approach..7
3.2 Measured Performance Parameters...7
3.3 Results Comparison...8
3.4 Benchmarking Tools and Workload Generators...8

3.4.1 Flashbench..8
3.4.2 FIO..9

3.5 File Systems and Their Performance Tuning Options...10
3.5.1 Ext3/Ext4..11
3.5.2 BTRFS..11
3.5.3 F2FS..11

3.6 I/O Schedulers..11
3.7 Expected Results..12
3.8 Observed Results...12

3.8.1 Linear and Random Direct Reading...13
3.8.2 Linear and Random Direct Writing..15
3.8.3 Linear Reading from Multiple Files (grep)...17
3.8.4 Linear Writing to Multiple Files (untar)...18
3.8.5 Linear Reading and Writing Multiple Files (compile)...19
3.8.6 Random Reading and Writing Multiple Files (fileserver)..21
3.8.7 Random Reading and Writing Multiple Memory-mapped Files (database).................22

3.9 Conclusion...23
4 SSD Wear Intensity..24

4.1 Approach..24
4.2 Results..24

5 Power-Fail Tolerance..25
5.1 Approach..25
5.2 Results..26

5.2.1 Ext4...26
5.2.2 BTRFS..26
5.2.3 F2FS..26
5.2.4 Fsck, Mount, and Unmount Performance...27

 Appendix I. Benchmarking Scripts...28
 Tree Structure...28
 Configuration..28
 Execution..28
 Sample Usage...29

COGENT EMBEDDED 4

May 24, 2013 eMMC/SSD File System Tuning Methodology

1 Introduction

1.1 Overview

This document provides a methodology for performance tuning of a file system operating on a
managed FLASH device, like SSD/SD/eMMC. It focuses on ext3/ext4, BTRFS and f2fs open
source file systems (list can be extended). A set of performance characteristics is defined and
tools for workload simulation / performance measurement are proposed. Procedures for wear
intensity estimation of tuned file systems and power-fail tolerance are described.

The document is accompanied with a set of scripts that allow conducting performance testing
and tuning for exact target/storage configuration in accordance with the methodology.

1.2 Acronyms and Abbreviations

Term Definition
atime Access time (one of the file time stamps)
eMMC Embedded MultiMedia Card
FS File System
IO, I/O Input/Output
relatime Relative access time (atime, that is only updated if the previous

atime was earlier than the current modify or change time)
SD Secure Digital (non-volatile memory card format)
SSD Solid State Drive

COGENT EMBEDDED 5

May 24, 2013 eMMC/SSD File System Tuning Methodology

2 Setup

2.1 Hardware Setup

No specific requirements for test hardware are imposed, though it is expected to have CPU
performance high enough to keep IO benchmarking IO-bound rather than CPU-bound.

Our selection of ARM/Cortex-A9 platform is explained by the fact that it is one of the most
popular choices for hardware configuration these days. (If necessary, different platforms – e.g.
Intel – can be easily added too.)

The conducted testing was performed using the following evaluation boards:

• TI OMAP 4460-based PandaBoard ES (with external SD cards)

• Exynos 4412-based ODROID-X board (with swappable Toshiba eMMC)

2.2 Software Setup

The following software configuration was used for the testing:

• kernel: mainline linux-3.8;

• userland: Ubuntu 12.04 for ARM;

• rootfs: mounted over NFS, common for both PandaBoard and ODROID-X. NFS allows
to minimize interference of system activities with benchmarking and minimize setup time
for new media;

• additional tools: btrfs-progs (git tip: v0.20-rc1-37-g91d9eec), f2fs-tools-1.1.0, fio
(2.0.10);

• host tools: gnuplot (graphical result comparison), expect (power switch control), gawk
(parsing test logs).

COGENT EMBEDDED 6

May 24, 2013 eMMC/SSD File System Tuning Methodology

3 Performance Benchmarking and Optimization
A number of factors influence file system performance. Some of them (like file system cache
size or file data predictability) do not depend on underlying media, others (like media access
pattern) do. In order to tune file system performance for specific media it needs to be put into
an environment where media-dependent factors would prevail. The following methods are
proposed to achieve that:

• use direct IO. This should be used only in cases when IO pattern is to be controlled by the
benchmark;

• pin down memory with mlock. This method is proposed for workloads that would use FS
cache in real life. Memory available for FS cache should be limited to 1/2...2 times total
file size used by the benchmark; -- unfortunately, this method proved to be very fragile:
task is either unable to mlock 1/2 of the free memory, or it is being killed by the oom-
killer once it could;

• limit available machine memory at boot time;

• use random data for file IO. This would mitigate data compression and de-duplication at
file system and device levels.

3.1 Approach

The following iterative approach for file system tuning is proposed:

1. file system without any tuning, (that is, with default options), is set up and its
performance parameters are measured;

2. each of the remaining tuning options is applied to the current file system setup and
performance parameters of the new setup are measured;

3. parameter difference is evaluated and the option that gives the biggest performance gain
is added to the current file system setup, step 2 is repeated until there are no more options
or no option gives performance gain.

Each benchmark provides a method for visual performance parameters comparison.
Benchmarking script also provides hints about optimal file system parameters/IO scheduler for
each workload and generally for a file system based on either cumulative throughput or worst
latency.

3.2 Measured Performance Parameters

The following parameters are chosen for FS performance evaluation:

1. aggregated throughput. This parameter is important for all tasks as it directly determines
available IO bandwidth and thus time needed to complete the task;

2. access latency. This parameter is important for interactive tasks.

The following benchmarks are chosen for FS performance evaluation:

1. linear read/write single-threaded throughput with a range of fixed IO block sizes;

2. random read/write single-threaded throughput and access latency with a range of fixed IO
block sizes;

COGENT EMBEDDED 7

May 24, 2013 eMMC/SSD File System Tuning Methodology

3. aggregated throughput of multithreaded workloads. This parameter shows FS
performance that may be expected by real tasks. The following workload types are
chosen:

3.1. linear read from multiple files (grep, archiving);

3.2. linear read + linear write to multiple files (unarchiving);

3.3. multithreaded linear read from multiple files + linear write (compilation);

3.4. multithreaded random read from multiple files + random write to multiple files
(file server);

3.5. multithreaded random read/write to memory-mapped file (simple database).

3.3 Results Comparison

Benchmarking tools produce result vectors that may be plotted together or compared
numerically.

Numerical comparison is performed by calculation of merit value for each combination of
benchmark + file system options + IO scheduler, and ordering them accordingly. Merit value
may be calculated either with respect to aggregated throughput or to worst latency:

mthroughput=(Σlog(throughputi))/n

mlatency=1/max(latencyi)

Each benchmarking run yields several data points (for different IO block size or IO size to
cache size ratio), summation and maximum determination are performed for all these points.
Winning file system options + IO scheduler combination for each benchmark is the one with
the highest merit. Winning file system options + IO scheduler combination for the medium is
the one with the highest sum of merit for each benchmark.

3.4 Benchmarking Tools and Workload Generators

The following tools are chosen for the benchmarking:

• flashbench;

• FIO.

The following candidates were also evaluated for the benchmarking:

1. IOZone: not flexible enough, functionality is superseded by FIO;

2. bonnie++: predictable test data, functionality is superseded by FIO;

3. filebench: not very stable, functionality is superseded by FIO.

3.4.1 Flashbench

Although not file system benchmarking tool, flashbench allows to measure FLASH media
characteristics such as erase block/segment size which in turn allow to tune file system
geometry accordingly. It is only used during initial evaluation of media characteristics.

The following approach for FLASH media geometry determination is proposed in the
flashbench README:

COGENT EMBEDDED 8

May 24, 2013 eMMC/SSD File System Tuning Methodology

“This is a simple read-only test doing small reads across boundaries of various sizes.
Example:

$ sudo ./flashbench -a /dev/mmcblk0 --blocksize=1024
align 134217728 pre 735µs on 1.08ms post 780µs diff 324µs
align 67108864 pre 736µs on 1.05ms post 763µs diff 300µs
align 33554432 pre 722µs on 1.04ms post 763µs diff 294µs
align 16777216 pre 727µs on 1.05ms post 772µs diff 302µs
align 8388608 pre 724µs on 1.04ms post 768µs diff 299µs
align 4194304 pre 741µs on 1.08ms post 788µs diff 317µs
align 2097152 pre 745µs on 950µs post 811µs diff 171µs
align 1048576 pre 745µs on 945µs post 807µs diff 169µs
align 524288 pre 743µs on 936µs post 799µs diff 165µs
align 262144 pre 746µs on 948µs post 809µs diff 171µs
align 131072 pre 737µs on 935µs post 804µs diff 165µs
align 65536 pre 735µs on 925µs post 796µs diff 159µs
align 32768 pre 735µs on 925µs post 800µs diff 157µs
align 16384 pre 745µs on 911µs post 781µs diff 148µs
align 8192 pre 785µs on 808µs post 725µs diff 53.3µs
align 4096 pre 784µs on 788µs post 779µs diff 5.85µs
align 2048 pre 787µs on 793µs post 789µs diff 4.65µs

This shows the access times to do two 1024 byte reads around the boundaries of power-
of-two aligned blocks. Reading at the end of a 128 MB unit takes around 735
microseconds, reading the last block of this unit together with the first block of the next
one takes about 1080 microseconds and reading the first two blocks in a 128 MB unit
takes around 780 microseconds.

The most interesting number here is the last one, the difference between the second
number and the average of the first and the third is 324 microseconds. These numbers
all stay roughly the same for all units between 4 MB and 128 MB.

However, from 2 MB down to 16 KB, the last column has a much lower value. This
indicates that whatever the memory card does on a 4 MB boundary does not happen at
other boundaries. The educated guess here is that 4 MB is the erase block size, also
called the segment or allocation unit size. This erase blocksize will need to be used in
other tests following this one.

Similarly, both 16 KB and 8 KB boundaries are special. The logical explanation for this
is that the card has 8 KB pages, but can use multi-plane accesses to read two 8 KB

pages simultaneously.”
Benchmarking scripts automate FLASH geometry guessing with the described method by
finding two rows in the 'flashbench -a' output with the biggest (Drow+1-Drow)/Drow, where Di is the
value of the last output column, and printing corresponding block sizes.

3.4.2 FIO

FIO is described as a tool that “would be able to simulate a given io workload without resorting
to writing a tailored test case”. It is highly configurable: there can be any number of processes
or threads involved, and they can each be using their own way of generating IO.

FIO is driven by job files. A job file may contain any number of threads and/or files - the
typical contents of the job file is a global section defining shared parameters, and one or more
job sections describing the jobs involved. When run, fio parses this file and sets everything up
as described. If we break down a job from top to bottom, it contains the following basic
parameters:

COGENT EMBEDDED 9

May 24, 2013 eMMC/SSD File System Tuning Methodology

1. IO type: defines the io pattern issued to the file(s). We may only be reading sequentially
from this file(s), or we may be writing randomly. Or even mixing reads and writes,
sequentially or randomly;

2. block size: in how large chunks we are issuing IO. This may be a single value, or it may
describe a range of block sizes;

3. IO size: how much data we are going to be reading/writing;

4. IO engine: how we issue IO. We could be memory mapping the file, we could be using
regular read/write, we could be using splice, async io, syslet, or even SG (SCSI generic
sg);

5. IO depth: if the IO engine is async, how deep queue we maintain;

6. IO type: should we be doing buffered IO, or direct/raw IO;

7. num files: how many files we are spreading the workload over;

8. num threads: how many threads or processes we should spread this workload over.

FIO measures a lot of job parameters, most interesting for us are:

1. the distribution of IO completion latencies;

2. average bandwidth.

FIO has the following shortcomings that limit the range of useful workloads:

1. it cannot measure read and write throughput of readwrite job separately: for jobs with
equal read and write data amount reported throughput numbers are also equal;

2. it cannot generate metadata intensive activity.

3.5 File Systems and Their Performance Tuning Options

The following common file system tuning options are chosen:

• noatime (mount -o noatime)

• historically, when a file is read, the access time (atime) for that file must be
updated in the inode metadata, which involves additional write I/O. If accurate
atime metadata is not required, file system may be mounted with the noatime
option to eliminate these metadata updates. In most cases, however, atime is not a
large overhead due to the default relative atime (or relatime) behavior. The
relatime behavior only updates atime if the previous atime is older than the
modification time (mtime) or status change time (ctime);

• discard (ext4, BTRFS, F2FS; mount -o discard)

• this option controls whether file system should issue discard/TRIM commands to
the underlying block device when blocks are freed. Time spent issuing TRIM
commands may be compensated by lower write operation delays if media is able
to take advantage of bigger free blocks pool.

File system specific options are listed for each evaluated file system.

COGENT EMBEDDED 10

May 24, 2013 eMMC/SSD File System Tuning Methodology

3.5.1 Ext3/Ext4

• no journal (tune2fs -O ^has_journal)

• this option turns off file system journal. It should be safe to do so on battery-backed
device with a stable kernel;

• data=writeback (mount -o data=writeback)

• this option specifies the following journaling mode for file data: data may be written
into the main file system after its metadata has been committed to the journal. This is
rumored to be the highest-throughput option. It guarantees internal file system
integrity, however it can allow old data to appear in files after a crash and journal
recovery;

• nobarrier (mount -o nobarrier)

• next to “no journal” option, should be tried in case “no journal” is not acceptable;
may be skipped if “no journal” is selected;

• this option disables the use of write barriers in the jbd code. Write barriers enforce
proper on-disk ordering of journal commits, making volatile disk write caches safe to
use, at some performance penalty. In case of battery-backed media disabling barriers
may safely improve performance;

• fs geometry (mount -o stripe=, mkfs -E stripe-width=)

• this option controls the number of file system blocks that mballoc will try to use for
allocation size and alignment. As in RAID5/6 case proper IO block size and
alignment may speed up FLASH write operations. Hint for the stripe width may be
deduced from the flashbench tool output.

3.5.2 BTRFS

• fs geometry (mkfs –leafsize=)

• this option controls the leaf size, the least data item in which btrfs stores data. As
in RAID5/6 case proper IO block size and alignment may speed up FLASH write
operations. Hint for the leaf size may be deduced from the flashbench tool output;

• SSD mode (mount -o ssd, mount -o ssd_spread)

• these options enable SSD-optimized allocation schemes.

3.5.3 F2FS

• fs geometry (mkfs -s -z):

• these options control number of segments per section and number of sections per
zone. Sizes that match chip parameters may speed up FLASH write operations.
Hint for the segment and zone sizes may be deduced from the flashbench tool
output;

3.6 I/O Schedulers

The following schedulers are proposed to be tested:

COGENT EMBEDDED 11

May 24, 2013 eMMC/SSD File System Tuning Methodology

• noop, as basic configuration;

• deadline, as it provides I/O request merging opportunity with guaranteed latency;

• cfq, as it is probably best suited for multithreaded workloads;

• row, as it prioritizes read requests (usually synchronous and latency-critical) over write
requests.

3.7 Expected Results

The following performance characteristics are generally expected:

• direct IO workloads throughput has little dependency on underlying file system and is
close to that of raw medium;

• IO workloads that go through file system cache have the following characteristics:

big cache small cache

read • aggregate throughput: nearly
constant, as with raw medium

• interference with other reads: device
bandwidth is divided between all
readers

• interference with writes: low
• IO scheduler effect: low

• aggregate throughput: depends on file
system, IO scheduler and concurrent
write activity

• interference with other reads: device
bandwidth is divided between all
readers

• interference with writes: high
• IO scheduler effect: high

write • aggregate throughput: high,
independent of medium

• interference with reads: low
• interference with writes: low
• IO scheduler effect: low

• aggregate throughput: depends on file
system, IO scheduler and concurrent
read and write activity

• interference with reads: high
• interference with writes: high
• IO scheduler effect: high

3.8 Observed Results

The following devices have been benchmarked:

• 16 GB class 10 SD card (Kingston);

• 16 GB class 10 SD card (Transcend);

• 16 GB class 10 SD card (SanDisk);

• 16 GB eMMC chip (Toshiba);

with the following results of automatic throughput-oriented analysis:

Medium BTRFS ext4 f2fs

16 GByte class 10 SD
card (Kingston)

ssd deadline 102979
noatime cfq 102788
discard row 102727
base row 102174
ssd cfq 102128

noatime cfq 99513
geometry cfq 98519
writeback cfq 98376
nojournal row 98314
nobarrier cfq 97969

base row 107223
discard cfq 106212
base cfq 106108
noatime row 105754
noatime deadline 105643

16Gbyte class 10 SD
card (Transcend)

ssd cfq 107477
ssd row 107142

nojournal cfq 103284
noatime cfq 103246

base row 111643
discard row 111342

COGENT EMBEDDED 12

May 24, 2013 eMMC/SSD File System Tuning Methodology

geometry cfq 106774
discard cfq 106711
ssd deadline 106474

noatime row 102373
nojournal row 102325
writeback cfq 102193

discard cfq 111272
noatime noop 111221
noatime cfq 111168

16 Gbyte class 10 SD
card (SanDisk)

ssd cfq 106681
base cfq 106528
geometry cfq 106253
noatime cfq 106192
ssd row 106190

nojournal cfq 102254
noatime cfq 101709
writeback cfq 101313
nobarrier cfq 101182
discard row 101026

noatime row 108446
base cfq 108419
discard row 107453
noatime cfq 107254
discard cfq 106571

16 GByte eMMC chip
(Toshiba)

base cfq 117721
noatime cfq 117324
geometry cfq 117060
discard cfq 116861
ssd row 116843

discard cfq 117597
noatime cfq 117584
writeback cfq 117520
base row 117515
nojournal cfq 117411

noatime cfq 117043
base cfq 116992
discard cfq 116644
discard row 116136
base row 116131

• BTRFS is consistently faster with SSD mode enabled on devices that support TRIM;

• ext4 prefers noatime/nojournal and CFQ scheduler. Strangely it works (slightly) faster
with discard enabled on eMMC without TRIM support;

• f2fs runs best with its basic settings, or with noatime enabled;

• CFQ scheduler dominates the table followed by the ROW.

3.8.1 Linear and Random Direct Reading

The following two types of read performance are observed on tested media:

first type, where random reads are as fast as sequential reads, on all file systems,

COGENT EMBEDDED 13

May 24, 2013 eMMC/SSD File System Tuning Methodology

and the second type, where random reads are slower than sequential reads for small block sizes,
but the difference gets lower as block size grows. In both cases performance is very little
affected by file system options or IO scheduler selection, but is different for different file
systems:

Optimal settings for linear direct reading:

Medium BTRFS ext4 f2fs

16 GByte class 10
SD card (Kingston)

noatime row 9313
noatime noop 9311
noatime deadline 9311
noatime cfq 9310
ssd deadline 9306

discard noop 9397
discard deadline 9397
noatime noop 9396
geometry noop 9395
geometry row 9394

noatime noop 9395
noatime deadline 9395
base noop 9395
base deadline 9395
discard noop 9394

16Gbyte class 10 SD
card (Transcend)

noatime noop 9427
geometry noop 9424
geometry cfq 9423
base noop 9423

noatime noop 9531
base noop 9531
writeback noop 9530
writeback deadline 9530

base noop 9529
base deadline 9529
discard noop 9528
discard deadline 9528

COGENT EMBEDDED 14

May 24, 2013 eMMC/SSD File System Tuning Methodology

base deadline 9423 nojournal noop 9530 discard cfq 9527

16 Gbyte class 10
SD card (SanDisk)

noatime noop 9513
ssd noop 9509
ssd deadline 9507
ssd cfq 9507
noatime deadline 9507

nobarrier noop 9625
noatime noop 9625
noatime deadline 9625
writeback noop 9624
nojournal noop 9624

noatime noop 9625
base noop 9625
base deadline 9625
discard deadline 9624
noatime row 9623

16 GByte eMMC
chip (Toshiba)

ssd noop 9849
ssd deadline 9846
geometry noop 9846
discard noop 9846
ssd cfq 9845

geometry deadline 10050
base deadline 10050
writeback deadline 10049
nojournal deadline 10049
noatime deadline 10047

noatime deadline 10056
discard noop 10056
noatime row 10055
noatime cfq 10055
base noop 10055

3.8.2 Linear and Random Direct Writing

The following two types of write performance are observed on tested media:

first type, where random write is significantly slower than sequential write and grows linearly
with IO block size. However it depends on the file system type, and even on such medium f2fs
performs significantly better than btrfs or ext4, keeping random writes on par with sequential
writes for IO block sizes up to 64KiB:

COGENT EMBEDDED 15

May 24, 2013 eMMC/SSD File System Tuning Methodology

and the second type, where random writes with small and large IO block size are fast, but with
medium IO block size are slow:

On such media f2fs also performs well with medium IO block size:

Optimal settings for linear direct writing:

Medium BTRFS ext4 f2fs

16 GByte class 10 SD
card (Kingston)

ssd noop 8768
ssd row 8766
ssd deadline 8766
geometry row 8755
noatime row 8751

writeback row 8967
writeback noop 8966
writeback deadline 8966
writeback cfq 8961
noatime row 8957

noatime noop 8864
discard noop 8809
base row 8799
base noop 8589
noatime deadline 8588

16Gbyte class 10 SD
card (Transcend)

discard deadline 8906
ssd cfq 8877
discard cfq 8873
ssd noop 8870
ssd deadline 8868

geometry deadline 9139
nobarrier row 9126
noatime noop 9122
geometry cfq 9118
geometry noop 9116

discard cfq 9035
base cfq 9032
base noop 9023
discard noop 8951
discard row 8931

COGENT EMBEDDED 16

May 24, 2013 eMMC/SSD File System Tuning Methodology

16 Gbyte class 10 SD
card (SanDisk)

discard cfq 8250
ssd cfq 8246
discard deadline 8244
base row 8244
discard noop 8242

base noop 8315
base deadline 8314
discard noop 8303
base row 8302
geometry deadline 8301

noatime noop 8263
noatime cfq 8201
noatime deadline 8199
noatime row 8193
base deadline 8148

16 GByte eMMC
chip (Toshiba)

geometry row 9188
geometry deadline 9186
ssd row 9184
noatime row 9184
noatime deadline 9183

writeback cfq 9160
nojournal cfq 9155
base cfq 9152
discard cfq 9147
geometry cfq 9144

discard noop 9226
noatime noop 9225
base deadline 9225
discard cfq 9224
noatime row 9222

3.8.3 Linear Reading from Multiple Files (grep)

All tested media show the following type of performance for this workload:

File system options and IO scheduler selection effect on performance reach up to 20% when
work set to free memory ratio is big.

Optimal settings for this workload:

Medium BTRFS ext4 f2fs

16 GByte class 10 SD
card (Kingston)

ssd deadline 9782
geometry cfq 9767
discard deadline 9766
noatime deadline 9764
base noop 9763

nojournal cfq 9712
nojournal deadline 9711
nojournal noop 9698
nojournal row 9693
base row 9674

discard noop 9708
noatime noop 9707
base deadline 9707
noatime deadline 9701
discard row 9701

16Gbyte class 10 SD
card (Transcend)

base row 9797
noatime row 9793
geometry noop 9793
geometry row 9789
discard deadline 9786

nojournal deadline 9741
nojournal row 9727
base deadline 9727
nobarrier cfq 9722
noatime noop 9721

discard noop 9747
discard deadline 9745
base noop 9743
base row 9739
discard row 9736

16 Gbyte class 10 SD
card (SanDisk)

geometry noop 9860
discard row 9858
geometry row 9854
geometry deadline 9854

noatime noop 9855
nobarrier deadline 9850
nojournal row 9849
nobarrier noop 9848

noatime deadline 9851
noatime noop 9847
discard noop 9847
discard deadline 9847

COGENT EMBEDDED 17

May 24, 2013 eMMC/SSD File System Tuning Methodology

geometry cfq 9853 discard row 9848 base row 9846

16 GByte eMMC chip
(Toshiba)

ssd cfq 10407
base cfq 10407
discard row 10401
discard cfq 10401
geometry row 10398

nojournal cfq 10397
nobarrier noop 10394
base deadline 10394
geometry cfq 10389
discard row 10384

discard noop 10422
base noop 10417
discard cfq 10416
noatime noop 10415
discard deadline 10414

3.8.4 Linear Writing to Multiple Files (untar)

All tested media show the following type of performance for this workload:

File system options and IO scheduler selection have significant impact on performance,
especially when work set is less than free memory:

Optimal settings for this workload:

Medium BTRFS ext4 f2fs

COGENT EMBEDDED 18

May 24, 2013 eMMC/SSD File System Tuning Methodology

16 GByte class 10
SD card (Kingston)

base row 10203
discard cfq 10088
base cfq 10075
base noop 9793
ssd deadline 9752

discard deadline 9592
writeback cfq 9406
nobarrier deadline 9381
noatime deadline 9335
nojournal noop 9308

base noop 9867
discard noop 9743
discard deadline 9735
base deadline 9627
noatime deadline 9614

16Gbyte class 10 SD
card (Transcend)

ssd cfq 10148
noatime cfq 10143
base cfq 10130
geometry cfq 10127
ssd row 10091

nobarrier row 9865
discard row 9848
base noop 9848
writeback cfq 9800
noatime noop 9790

base noop 10200
discard noop 10154
base deadline 10044
discard deadline 9919
base row 9863

16 Gbyte class 10 SD
card (SanDisk)

geometry noop 9375
geometry deadline 9375
discard deadline 9359
ssd row 9341
noatime deadline 9340

base row 9435
noatime row 9297
discard cfq 9281
base noop 9274
nojournal noop 9265

noatime deadline 9261
discard noop 9250
noatime row 9071
discard deadline 9002
base cfq 8998

16 GByte eMMC
chip (Toshiba)

base cfq 10561
ssd noop 10440
noatime cfq 10440
discard noop 10439
noatime deadline 10436

base row 10461
base deadline 10451
nojournal cfq 10412
discard noop 10406
base cfq 10380

base cfq 10318
noatime cfq 10207
discard deadline 10205
noatime deadline 10194
base deadline 10153

3.8.5 Linear Reading and Writing Multiple Files (compile)

All tested media and all file systems have the following type of performance for this workload:

Write performance starts with very high numbers when work set is small and drops to nearly
direct linear medium write speed at big work set size. Read performance varies insignificantly
with work set size change, but highly depends on selected IO scheduler and a little less on file
system options. Noop scheduler shows the worst aggregated throughput, CFQ and ROW show
the best. Both read and write throughput variation with file system options and IO scheduler
selection reaches 400%:

COGENT EMBEDDED 19

May 24, 2013 eMMC/SSD File System Tuning Methodology

Optimal settings for this workload:

Medium BTRFS ext4 f2fs

16 GByte class 10 SD
card (Kingston)

ssd row 19869
discard row 19654
base row 19537
geometry cfq 19504
ssd cfq 19501

nojournal cfq 18935
noatime cfq 18660
noatime row 18582
nojournal row 18494
discard row 18016

discard row 19461
noatime row 19393
discard cfq 19391
base row 19130
base cfq 18973

16Gbyte class 10 SD
card (Transcend)

geometry row 20321
ssd row 20230
base cfq 20164
geometry cfq 20162
noatime row 20123

noatime cfq 19425
nojournal cfq 19255
noatime row 19109
base cfq 18833
base deadline 18571

discard row 20119
base row 19944
discard cfq 19419
discard noop 19224
base noop 19207

16 Gbyte class 10 SD base cfq 20033 nojournal cfq 19410 noatime row 20069

COGENT EMBEDDED 20

May 24, 2013 eMMC/SSD File System Tuning Methodology

card (SanDisk) ssd row 19977
geometry row 19951
geometry cfq 19948
discard row 19884

noatime cfq 19161
noatime row 19099
nojournal row 18957
writeback row 18780

base row 19995
base cfq 19983
discard cfq 19964
noatime cfq 19797

16 GByte eMMC chip
(Toshiba)

base cfq 21189
ssd cfq 21133
noatime cfq 21008
ssd row 20972
discard row 20895

writeback cfq 21492
base noop 21447
noatime cfq 21330
base deadline 21296
discard cfq 21246

noatime cfq 20891
base cfq 20885
discard row 20879
base row 20801
discard cfq 20781

3.8.6 Random Reading and Writing Multiple Files (fileserver)

All tested media and all file systems have the following type of performance for this workload
(similar to one for linear reading and writing, but with bigger write throughput degradation on
big work set size):

Throughput varies greatly with file system options and IO scheduler selection.

Optimal settings for this workload:

Medium BTRFS ext4 f2fs

16 GByte class 10 SD
card (Kingston)

noatime cfq 18391
ssd deadline 17845
discard row 17843
base row 17462
ssd cfq 16668

noatime cfq 17275
geometry cfq 17024
nojournal row 16871
writeback cfq 16732
nobarrier cfq 16652

base row 18226
noatime deadline 17679
base cfq 17226
discard cfq 17087
noatime cfq 17074

16Gbyte class 10 SD
card (Transcend)

geometry cfq 19490
ssd cfq 19484
discard cfq 19473
ssd row 19083
base cfq 18858

nojournal cfq 18149
writeback cfq 18077
noatime cfq 18072
nobarrier cfq 18064
geometry cfq 17939

base row 19457
discard cfq 19427
discard row 19099
base cfq 18734
discard deadline 18674

16 Gbyte class 10 SD
card (SanDisk)

ssd cfq 19021
base cfq 18923
discard cfq 18858
noatime cfq 18761

nojournal cfq 18098
discard row 17915
writeback cfq 17846
nobarrier cfq 17769

base cfq 18975
noatime row 18969
discard row 18729
base deadline 17862

COGENT EMBEDDED 21

May 24, 2013 eMMC/SSD File System Tuning Methodology

geometry cfq 18640 noatime cfq 17764 noatime noop 17859

16 GByte eMMC chip
(Toshiba)

base cfq 20468
noatime cfq 20417
geometry cfq 20336
discard cfq 20271
ssd row 20240

base cfq 20392
discard cfq 20383
geometry row 20284
noatime cfq 20265
writeback row 20116

noatime cfq 19232
base cfq 19165
discard cfq 19129
base row 19074
noatime row 19040

3.8.7 Random Reading and Writing Multiple Memory-mapped Files
(database)

All tested media and all file systems have the following type of performance for this workload:

Optimal settings for this workload:

Medium BTRFS ext4 f2fs

16 GByte class 10 SD
card (Kingston)

ssd cfq 14668
ssd row 14603
ssd noop 14501
ssd deadline 14495
discard cfq 14368

nojournal cfq 12293
base cfq 12255
noatime cfq 12253
nobarrier cfq 12247
discard cfq 12219

discard cfq 14806
base cfq 14800
noatime cfq 14760
base row 14642
discard deadline 14635

16Gbyte class 10 SD
card (Transcend)

ssd deadline 15973
ssd cfq 15930
ssd row 15907
ssd noop 15880
discard cfq 15654

nojournal cfq 14015
writeback cfq 13979
base cfq 13910
nojournal row 13888
noatime cfq 13839

discard cfq 16304
base cfq 16291
base deadline 16194
discard noop 16149
base noop 16135

16 Gbyte class 10 SD
card (SanDisk)

ssd cfq 15322
discard cfq 15295
noatime cfq 15289
base cfq 15284
geometry cfq 15235

nojournal cfq 13112
writeback cfq 12937
discard row 12822
writeback row 12804
noatime cfq 12799

noatime cfq 15576
base cfq 15479
discard cfq 15377
noatime row 15150
noatime deadline 15054

COGENT EMBEDDED 22

May 24, 2013 eMMC/SSD File System Tuning Methodology

16 GByte eMMC chip
(Toshiba)

discard cfq 17396
base row 17366
ssd cfq 17323
geometry cfq 17323
base cfq 17305

nobarrier cfq 17561
writeback cfq 17537
discard cfq 17529
geometry row 17518
nojournal row 17505

noatime cfq 17825
base cfq 17754
discard cfq 17739
base row 17324
discard row 17296

3.9 Conclusion

Benchmarking results look mostly as expected: read bandwidth is limited by media, random
write bandwidth is great with big FS cache and gets limited by media as I/O work set gets
bigger than FS cache.

There's no single set of file system options/IO schedulers optimal for all media, each medium
has its own performance profile.

Unidirectional (read only, write only) workloads are less sensitive to file system options and IO
scheduler selection than bidirectional workloads.

COGENT EMBEDDED 23

May 24, 2013 eMMC/SSD File System Tuning Methodology

4 SSD Wear Intensity
The physical media has a limited resource of operation in terms of, at least, maximal amount of
block erase/write cycles. In case of SSD media a range of S.M.A.R.T. attributes describe device
health, most notable are erase/program cycles counter (the total count of erase/program cycles
for entire flash memory in its entire lifetime), and worst case erase counter (the maximum
number of erase operations performed on a single flash memory block). When erase counter of
particular block reaches the safety threshold (e.g. 100000 erase operations), the block cannot be
used for writing any longer, so it should be either marked as read-only (if it contains valid data)
or marked as non-available (cannot be selected by flash controller for writing new data, and
therefore effective storage capacity lowers). Particularities of flash management algorithm are
unknown to external observer and constitute the know-how of flash device manufacturer.
However we can (safely) choose the following comparison criterion: we will say that of two
file system configurations the one that gives slower ascending of total erase counter estimation
is "better". In other words, we believe that any “decent” flash management algorithm will
distribute the workload (almost) uniformly across all blocks in the storage, and reducing of
total erase counter will proportionally increase expected device lifetime.

4.1 Approach

Straightforward comparison procedure is to retrieve total-erase-counter parameter before and
after performance tests run, and to use relative growth of the counter serves as a score (to
achieve the certain level of confidence the simulation may be repeated multiple times and
received score is averaged). Of two file system configurations (different file systems or
different configuration parameters of single file system) the one with lower averaged score
observed in such way is considered as a preferred.

In practice, system designer is interested in expected lifetime duration of device that naturally
varies with regard to intended usage scenario. The workload which is not specific to device
may easily kill its storage quickly (e.g. tablet used as mail-server). Therefore it is clear that
benchmark used for estimation of wear intensity shall be chosen to reflect “typical” usage.
Such typical usage can be modeled roughly as number of primitive operations performed daily /
weekly / monthly, so there is known relation between single benchmark cycle and “modeled”
device run time (e.g. one cycle corresponds to 3 months of “normal” device usage). Basing on
observed wear intensity and characteristics of underlying physical storage it is possible to
derive expected device lifetime for given file system configuration, and that information may
be used by system designer to make a decision on what file system to use. For example, if two
configurations yield expected lifetime duration 30 and 100 years respectively, probably the
parameter is not so important and system designer should base his/her decision on file system
performance characteristics; in contrast, if it is 1 and 3 years, probably importance of that
parameter becomes quite high.

4.2 Results

Unfortunately, none of the tested samples supports S.M.A.R.T. diagnostic interface, and
described comparison method is not applicable. As there is no way to execute flash controller
firmware in simulated environment (for instance, nandsim used as underlying flash media), the
only way to compare two file system configurations is to wear off the device completely and to
compare the time-until- failure. Such brute-force comparison procedure is too costly (in all
senses) to perform, and therefore it has not been performed.

COGENT EMBEDDED 24

May 24, 2013 eMMC/SSD File System Tuning Methodology

5 Power-Fail Tolerance
The aim of power-failure tests is to make sure that file-system and data integrity is preserved
after unexpected power outages (or in some cases, after sudden system reset, e.g. triggered by
hardware watchdog). It is expected outcome that data which existed only in operating system
caches will get lost; more important is what happens to information that has been previously
committed to persistent storage. Corruption of data that was successfully flushed to disk, or
corruption of data that was not accessed at all, or even corruption of entire file system (i.e.
inability to mount disk on next boot) are major faults that may forbid usage of specific file
system configuration or even particular storage media unless hardware modifications are added
that (practically) guarantee absence of power-failures.

From hardware perspective, certain operations are expected to be atomic. For instance, block
erase operation or page writing operation all should be atomic. If operation is not completed for
some reason, the state of flash cell array is, strictly speaking, unknown – a block may be erased
just partially, or page programming may be incomplete. It is known that abnormal termination
of such atomic operations may put flash array in internally unstable state (subsequent reading
of the “partially-written” bits may get different values, and writing into “partially-erased” pages
is not guaranteed to be correct), and suggested resolution is to repeat aborted procedure. As
operating system is not managing flash (the task is performed by flash controller firmware),
there is no real control over such “low-level” errors from file system standpoint, and
consequently it is entire responsibility of the firmware to assure proper handling of events like
these. File system, in turn, is responsible for consistency of its metadata and data (in other
words, it shall recover from errors if underlying flash management layer is “reliable”), and it is
expected that different configurations may show different behavior under power-failures.

There are a number of parameters that may get affected by power-failure. For instance, file
system recovery procedure may get triggered on next boot resulting in significantly longer
start-up time; or first file access time after power-failure may be longer. All such aspects may
be important from general system operation standpoint, however in this section we will
concentrate only on file system metadata and data integrity – something that we can assess
relatively easily.

5.1 Approach

Power-failure test script (located at git://git.cogentembedded.com/pub/celf/pf-test) performs
unattended simulation of power failures and analyzes file system and data integrity check
results. Detailed execution log is saved for further examination. Power-fail test server residing
on host manages the execution of various remote tests on target with particular file system
configuration set up, and controls power source to initiate power outages at random time
instants during remote test execution. Test server connects to the target and retrieves logging
and diagnostic information.

The following steps are executed in a loop for each remote test and file system:

1. connect to the target;

2. perform mandatory file system check and recovery;

3. perform data integrity check if applicable;

4. mount current file system configuration;

5. start background test;

6. initiate power outage after random interval.

COGENT EMBEDDED 25

May 24, 2013 eMMC/SSD File System Tuning Methodology

The following file system workloads are proposed:

• fsstress, that would stress file system metadata;

• custom SQLite test scripts, that would reveal occasional file data corruption.

Fsstress proved to be quite effective in detecting various file system implementation issues in
the past. And SQLite is known for its extra care about power failures. Therefore, if SQLite
database becomes corrupted, the most likely reason for this lies in file system or physical
storage layers.

5.2 Results

Power-failure testing is time consuming process. Depending on required confidence degree, the
complete testing round may take from one day to several weeks. (Of course, really bad
configurations will be detected much earlier.) Therefore, this section provides just a few
samples of what you get from power-failure tests, without trying to cover all possible
configurations exercised by performance tuning procedure.

We used two sets of parameters for each file system: “default” and “the recommended
performance-wise”, and executed the tests on PandaBoard with 16 GB class 10 SD card
(Kingston).

It should be noted that optimal parameters from performance point of view may be the worst
possible ones from power-failure tolerance perspective. This is especially true for ext4 which
delivers the best performance with crucial safety features (barriers, journal) disabled.

5.2.1 Ext4

This proved to be the most robust file system among the tested ones, but only at the expense of
improved performance. (In the absence of journal, fsck fails to auto-recover the file system
after just a couple of power failures. Thus, this mode is not covered in the following
performance-related comparison table.)

Default journaling mode, with and without nobarrier mount option enabled randomly, survived
1406 power cycles before fsck detected unrecoverable failure.

Note: “Manual recovery” fsck feature still allowed to bring ext4 partition into consistent state by blindly
answering “yes” to very low-level and highly technical questions. But in real life this would likely mean loss of
data.

It is interesting that the last mount command before the failure did not use nobarrier option.
This may indicate that it is safe to use it in our configuration to improve performance without
affecting power-fail tolerance. Although, more testing rounds are required to prove this.

5.2.2 BTRFS

The test fails after just a few power cycles because fsck finds errors which it is not able to
auto-recover. This happened both with default mount options, and with performance-oriented
ones. Since no safety-related parameters were disabled during the tests, the conclusion is to
avoid using btrfs in that particular configuration if power loss events are anticipated.

5.2.3 F2FS

Unfortunately, F2FS does not have the fsck utility. Therefore, “mandatory file system check
and recovery” step could not be executed for F2FS. This is probably the reason why it

COGENT EMBEDDED 26

May 24, 2013 eMMC/SSD File System Tuning Methodology

demonstrated the most troublesome behavior: hanged sync command during one round of
testing, and severe file system issues revealed by manual checking of basic file system
operations, (although, mount operation alone reported no problems), during another round.
Thus, similar to btrfs, F2FS is not recommended for usage in this particular configuration in the
presence of power failures.

5.2.4 Fsck, Mount, and Unmount Performance

The following table contains statistics for file system-related operations which may affect OS
startup and shutdown times. Btrfs, f2fs, and ext4 rows represent statistics with default mount
options, and corresponding *perf rows – with performance-oriented options: btrfs(ssd,
noatime), f2fs(discard, noatime), ext4(nobarrier).

 : min | max | mean | median | count
btrfs fsck : 0.05 | 0.36 | 0.20 | 0.20 | 3
btrfsperf fsck : 0.03 | 0.12 | 0.06 | 0.04 | 5
f2fs fsck : - | - | - | - | 173
f2fsperf fsck : - | - | - | - | 1496
ext4 fsck : 0.02 | 4.44 | 2.51 | 2.45 | 714
ext4perf fsck : 0.36 | 4.70 | 2.53 | 2.42 | 694

btrfs mount : 0.17 | 0.20 | 0.18 | 0.17 | 3
btrfsperf mount : 0.14 | 1.77 | 0.40 | 0.17 | 7
f2fs mount : 0.02 | 3.49 | 1.23 | 0.85 | 345
f2fsperf mount : 0.02 | 4.64 | 1.28 | 1.01 | 2990
ext4 mount : 0.01 | 1.24 | 0.16 | 0.17 | 1426
ext4perf mount : 0.01 | 0.63 | 0.16 | 0.17 | 1387

btrfs umount : 0.43 | 0.43 | 0.43 | 0.43 | 1
btrfsperf umount : 0.29 | 0.37 | 0.31 | 0.31 | 5
f2fs umount : 0.03 | 2.05 | 0.38 | 0.22 | 171
f2fsperf umount : 0.03 | 4.35 | 0.74 | 0.78 | 1498
ext4 umount : 0.03 | 2.14 | 0.19 | 0.18 | 713
ext4perf umount : 0.03 | 1.96 | 0.19 | 0.18 | 694

Since we got more-or-less trustful results only for ext4 file system, others are provided only as
samples of what you can get from power-failure test logs.

An interesting observation is that maximum values could be much larger than the median ones.
This should be taken into account while designing system with tight startup/shutdown time
budget.

COGENT EMBEDDED 27

May 24, 2013 eMMC/SSD File System Tuning Methodology

Appendix I. Benchmarking Scripts

Git tree with benchmarking scripts is available at
git://git.cogentembedded.com/pub/celf/flashopt

Tree Structure

./
├── benchmark/ # benchmarks directory
│ ├── common # common parts of benchmark scripts
│ ├── benchmark-script # script instance
│ ├── benchmark-script.config # instance configuration
│ ├── benchmark-script.job # FIO job definition (for fio scripts)
│ └── ...
├── fs/ # file systems directory
│ ├── btrfs/ # file system instance
│ │ ├── config # common parts of configuration scripts
│ │ ├── fs-configuration-script # fs configuration script instance
│ │ ├── fs-configuration-script.config # instance configuration
│ │ └── ...
│ ├── ...
│ └── common # common parts of all file system scripts
├── iosched/ # IO schedulers directory
│ ├── config # common parts of configuration scripts
│ ├── ioscheduler-script # IO scheduler configuration script instance
│ └── ...
├── result-xxx/ # results directory
│ └── fs/
│ ├── <fs>/ # results for the file system <fs>
│ │ ├── <fs-config>-<benchmark> # result for <benchmark> in <fs-config>
│ │ └── ...
│ └── ...
├── config # common configuration parameters
└── run* # topmost run wrapper

All scripts in the tree are bash scripts, configuration files are sourced.

Configuration

./config file is the main configuration file, it defines parameters of the used media and file
system options:

device=/dev/mmcblk0p3 # device used for testing
mount_dir=/media/mmc # test mount point
result_dir=result-kingston-sd8g4c # result directory location
media_page_size=16384 # media page size
media_erase_block_size=4194304 # media erase block size

ext4_default="nobarrier" # current configuration for ext4
ext4_exclude="geometry" # list of excluded configurations for ext4
btrfs_default="noatime ssd" # current configuration for btrfs
btrfs_exclude="geometry" # list of excluded configurations for btrfs
f2fs_default="noatime" # current configuration for f2fs
f2fs_exclude="geometry" # list of excluded configurations for f2fs

A hint on the media geometry parameters may be obtained from ./run geometry.

Execution

COGENT EMBEDDED 28

May 24, 2013 eMMC/SSD File System Tuning Methodology

Once ./config is filled ./run script may be started. For each missing file under ${result_dir} it
invokes fs configuration scripts not mentioned in *_default variables to create and mount
corresponding file system and then it invokes benchmarking scripts in turn and put their output
into the ${result_dir}.

Once ./run is complete result comparison graphs may be built by running ./run gdiff.

Comparison graphs for arbitrary (but compatible) result sets may be built by calling
benchmarking scripts with parameter 'gdiff' and a list of result files to compare.

Sample Usage

1. fill in ./config for the test:

$ cat > config
device=/dev/mmcblk0p3
mount_dir=/media/mmcblk0p3
result_dir=result-kingston-sd8g4c
ext4_default=""
btrfs_default=""
f2fs_default=""
^D

2. Determine flash media parameters:

./run geometry | tee -a ./config
#
Guessed media geometry
#
media_page_size=16384
media_erase_block_size=4194304

Note that run geometry is essentially guessing based on the flashbench output, it may be
unstable and inaccurate.

3. If the step 2 result does not look sane try to analyze flashbench output manually.
Please see section 3.4.1 for the recommended way of doing that.

flashbench -a /dev/mmcblk0 --blocksize=1024
align 134217728 pre 735µs on 1.08ms post 780µs diff 324µs
...
align 4194304 pre 741µs on 1.08ms post 788µs diff 317µs
align 2097152 pre 745µs on 950µs post 811µs diff 171µs
align 1048576 pre 745µs on 945µs post 807µs diff 169µs
...
align 16384 pre 745µs on 911µs post 781µs diff 148µs
align 8192 pre 785µs on 808µs post 725µs diff 53.3µs
align 4096 pre 784µs on 788µs post 779µs diff 5.85µs
...

That output suggests that media_erase_block_size should be 4194304 and
media_page_size should be 16384. If the flashbench output looks chaotic and it's
impossible to guess media geometry then geometry variation may be disabled:

cat >> config
COGENT EMBEDDED 29

May 24, 2013 eMMC/SSD File System Tuning Methodology

ext4_exclude='geometry'
btrfs_exclude='geometry'
f2fs_exclude='geometry'
^D

4. run it:

./run

5. see the results:

1. plot performance parameters:

$./run gdiff

This will pop up a bunch of gnuplot windows with performance parameters for every
benchmark that was run.

2. see automatic analysis hint:

$./run analyze throughput

or

$./run analyze latency

This will print the best file system option, IO scheduler and associated performance
metric for every file system and every benchmark.

6. choose file system options to apply, add them to the corresponding *_default
parameters in the config file, e.g. set

ext4_default=”nojournal noatime”
btrfs_default=”ssd noatime”
f2fs_default=”geometry”

7. change result directory, e.g. set

result_dir=result-kingston-sd8g4c-iteration2

8. repeat from step 4.

COGENT EMBEDDED 30

	1 Introduction
	1.1 Overview
	1.2 Acronyms and Abbreviations

	2 Setup
	2.1 Hardware Setup
	2.2 Software Setup

	3 Performance Benchmarking and Optimization
	3.1 Approach
	3.2 Measured Performance Parameters
	3.3 Results Comparison
	3.4 Benchmarking Tools and Workload Generators
	3.4.1 Flashbench
	3.4.2 FIO

	3.5 File Systems and Their Performance Tuning Options
	3.5.1 Ext3/Ext4
	3.5.2 BTRFS
	3.5.3 F2FS

	3.6 I/O Schedulers
	3.7 Expected Results
	3.8 Observed Results
	3.8.1 Linear and Random Direct Reading
	3.8.2 Linear and Random Direct Writing
	3.8.3 Linear Reading from Multiple Files (grep)
	3.8.4 Linear Writing to Multiple Files (untar)
	3.8.5 Linear Reading and Writing Multiple Files (compile)
	3.8.6 Random Reading and Writing Multiple Files (fileserver)
	3.8.7 Random Reading and Writing Multiple Memory-mapped Files (database)

	3.9 Conclusion

	4 SSD Wear Intensity
	4.1 Approach
	4.2 Results

	5 Power-Fail Tolerance
	5.1 Approach
	5.2 Results
	5.2.1 Ext4
	5.2.2 BTRFS
	5.2.3 F2FS
	5.2.4 Fsck, Mount, and Unmount Performance

